QPL CERTIFICATION for PM907S & PM948S SERIES OF FILM CAPACITORS

Exxelia is pleased to announced the ESA/QPL certification for its film capacitors series PM907S and PM948S.


Series PM907S and PM948S of Film capacitors obtained the QPL certification from the European Space Components Coordination (ESCC). According to the ESCC Detail Specification No. 3006/025 and 3006/026 QPL certified products ensure superior performances, quality and reliability intended for use by the European Space Agency (ESA) and in Space in general.

PM907S and PM948S are full series of Polyester Film Capacitors. PM907S products are suitable for voltages from 50V up to 1250V and offer capacitance values from 82nF up to 180μF. PM948S can be used with a voltages from 50V up to 630V with capacitance values from 22nF up to 47μF. Both series can support extreme conditions with temperatures from -55°C to +125°C, and offer high energy density, low ESR & ESL and high RMS current.

Products are typically being used in SMPS (Switch Mode Power Suppliers) and BUS filtering.

These two certified series complete the list of Exxelia Group’s QPL certified film capacitors, that now includes:

– PM90S
– PM907S
– PM96S (T)
– PM94S
– PM948S
– MKT5
– KM111S
– KM94S

Published on 28 Jun 2016 by Marion Van de Graaf

Innovative RF/Microwave components at IMS - Booth# 635 -

Ultra low ESR, high RF power and high self-resonant frequency The NHB series is a complete range of MLCC based on NPO dielectric material providing a very high Self Resonant Frequency and limiting the parasite Parallel Resonant Frequencies. The series is available in 1111 size with capacitance ranging from 0. 3pF to 100pF. NHB series offers excellent performance for RF power applications at high temperature up to 175°C and at 500 VDC. The lowest ESR is obtained by combining highly conductive metal electrodes and proprietary of new NPO low loss rugged dielectrics. NHB series particularly fits for high power and high frequency applications such as: cellular base station equipment, broadband wireless service, point to point / multipoint radios and broadcasting equipment. Typical circuit applications: impedance matching, bypass, feedback, tuning, coupling and DC blocking. 100% invar tuning screws with self-locking system Invar-36 is a unique Iron-Nickel alloy (64 % Fe / 36 % Ni) sought-after for its very low coefficient of thermal expansion. With 1.1 ppm. K–1 between 0°C and 100°C, Invar-36 is about 17 times more stable than Brass which is the most traditional and common alloy Tuning Elements are made of. The working temperature range in Space is so wide that this property becomes essential for a reliable and stable cavity filter tuning. Self-locking system is a technology commonly used on Tuning Element made of Brass or other soft “easy-to-machine” alloys but is innovative and pretty advanced when applied to hard and tough Invar 36. The design consists of two threaded segments separated by two parallel slots. After cutting both parallel slots, the rotor is compressed in its length in order to create a plastic deformation. Thus, an offset is induced between the two threaded segments which generates a constant tensile stress in the rotor from the moment threaded segments are screwed. High Q Factor Dielectric Resonators Dielectric resonators are designed to replace resonant cavities in microwave functions such as filters and oscillators. Exxelia has developed with support of ESA and CNES, a new high-end dielectric material, E7000 series, designed for high-end filters where high Q factor is requested. E7000 is Ba-Mg-Ta materials based that combines an ultra-high Q factor and the possibility to get all the temperature coefficients upon request. E7000 provides high-performance requested for space use in the frequency range 5 to 32 GHz, and guarantees up to Qxf > 250 000 at 10GHZ. Typical applications: Satellite multiplexing filter devices, radio links for communication systems (LMDS), military radars.

Introducing new EXXELIA.COM

Completely re-designed Exxelia new website features user-friendly design, improved functionalities and enhanced rich content to assist electronic engineers, component purchasers, industry professionals and students to quickly access information.  Created with the user experience firmly in mind, the website has been designed to make Exxelia’s vast product portfolio easy to browse. A parametric search engine with filters specific to each product category (capacitance, voltage, temperature, insertion loss, current, frequency, etc.) enables to narrow down the product portfolio and access information in a quick, trouble free and efficient way. More than 680 product series are listed on the website with relevant literature accessible for each series: datasheets, 3D models, high-res pictures and much more.      Technical data, application guides, white papers work together to provide a detailed overview of Exxelia’s capabilities across wide range of technologies. An application section presents the major markets the group is involved in, with a dedicated product selection for every sub-environments: avionics & cockpit, actuation systems, satellites, radars, medical imaging, etc. This section also contributes to better present Exxelia’s diversified offer of components that includes capacitors, magnetics, filters and electromechanical solutions.  “We are thrilled about the new website launch and the robust information it provides to better understand Exxelia wide product offering. We believe this will improve the overall customer experience and strengthen our brand as a technology leader and quality product manufacturer” said Marie Evrard, Head of Marketing and Communication at Exxelia.  “We believe this new site will allow our visitors to have a very informative experience as we increase our market presence. The group continues to grow and it was necessary to streamline our website to make it easier to navigate.” states Jérôme Tabourel, Marketing & Sales VP at Exxelia. Exxelia new website will be updated on a regular basis with new product launches, company info, events and technical information.  

This website uses cookies for statistics purposes. By continuing to browse the site you are agreeing to our use of cookies.